Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636166

RESUMO

Lysine dioxygenase (KDO) is an important enzyme in human physiology involved in bioprocesses that trigger collagen cross-linking and blood pressure control. There are several KDOs in nature; however, little is known about the factors that govern the regio- and stereoselectivity of these enzymes. To understand how KDOs can selectively hydroxylate their substrate, we did a comprehensive computational study into the mechanisms and features of 4-lysine dioxygenase. In particular, we selected a snapshot from the MD simulation on KDO5 and created large QM cluster models (A, B, and C) containing 297, 312, and 407 atoms, respectively. The largest model predicts regioselectivity that matches experimental observation with rate-determining hydrogen atom abstraction from the C4-H position, followed by fast OH rebound to form 4-hydroxylysine products. The calculations show that in model C, the dipole moment is positioned along the C4-H bond of the substrate and, therefore, the electrostatic and electric field perturbations of the protein assist the enzyme in creating C4-H hydroxylation selectivity. Furthermore, an active site Tyr233 residue is identified that reacts through proton-coupled electron transfer akin to the axial Trp residue in cytochrome c peroxidase. Thus, upon formation of the iron(IV)-oxo species in the catalytic cycle, the Tyr233 phenol loses a proton to the nearby Asp179 residue, while at the same time, an electron is transferred to the iron to create an iron(III)-oxo active species. This charged tyrosyl residue directs the dipole moment along the C4-H bond of the substrate and guides the selectivity to the C4-hydroxylation of the substrate.

2.
Inorg Chem ; 63(15): 6752-6766, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38551622

RESUMO

Sulfur ligation in metalloenzymes often gives the active site unique properties, whether it is the axial cysteinate ligand in the cytochrome P450s or the equatorial sulfur/thiol ligation in nonheme iron enzymes. To understand sulfur ligation to iron complexes and how it affects the structural, spectroscopic, and intrinsic properties of the active species and the catalysis of substrates, we pursued a systematic study and compared sulfur with amine-ligated iron(IV)-oxo complexes. We synthesized and characterized a biomimetic N4S-ligated iron(IV)-oxo complex and compared the obtained results with an analogous N5-ligated iron(IV)-oxo complex. Our work shows that the amine for sulfur replacement in the equatorial ligand framework leads to a rate enhancement for oxygen atom and hydrogen atom transfer reactions. Moreover, the sulfur-ligated iron(IV)-oxo complex reacts through a different reaction mechanism as compared to the N5-ligated iron(IV)-oxo complex, where the former reacts through hydride transfer with the latter reacting via radical pathways. We show that the reactivity differences are caused by a dramatic change in redox potential between the two complexes. Our studies highlight the importance of implementing a sulfur ligand into the equatorial ligand framework of nonheme iron(IV)-oxo complexes and how it affects the physicochemical properties of the oxidant and its reactivity.

3.
Inorg Chem ; 63(10): 4474-4481, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38408891

RESUMO

Transforming CO2 into valuable materials is an important reaction in catalysis, especially because CO2 concentrations in the atmosphere have been growing steadily due to extensive fossil fuel usage. From an environmental perspective, reduction of CO2 to valuable materials should be catalyzed by an environmentally benign catalyst and avoid the use of heavy transition-metal ions. In this work, we present a computational study into a novel iron(I) porphyrin catalyst for CO2 reduction, namely, with a tetraphenylporphyrin ligand and analogues. In particular, we investigated iron(I) tetraphenylporphyrin with one of the meso-phenyl groups substituted with o-urea, p-urea, or o-2-amide groups. These substituents can provide hydrogen-bonding interactions in the second coordination sphere with bound ligands and assist with proton relay. Furthermore, our studies investigated bicarbonate and phenol as stabilizers and proton donors in the reaction mechanism. Potential energy landscapes for double protonation of iron(I) porphyrinate with bound CO2 are reported. The work shows that the bicarbonate bridges the urea/amide groups to the CO2 and iron center and provides a tight bonding pattern with strong hydrogen-bonding interactions that facilitates easy proton delivery and reduction of CO2. Specifically, bicarbonate provides a low-energy proton shuttle mechanism to form CO and water efficiently. Furthermore, the o-urea group locks bicarbonate and CO2 in a tight orientation and helps with ideal proton transfer, while there is more mobility and lesser stability with an o-amide group in that position instead. Our calculations show that the o-urea group leads to reduction in proton-transfer barriers, in line with experimental observation. We then applied electric-field-effect calculations to estimate the environmental effects on the two proton-transfer steps in the reaction. These calculations describe the perturbations that enhance the driving forces for the proton-transfer steps and have been used to make predictions about how the catalysts can be further engineered for more enhanced CO2 reduction processes.

4.
Chemistry ; 30(22): e202400019, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38323740

RESUMO

The nonheme iron dioxygenase deoxypodophyllotoxin synthase performs an oxidative ring-closure reaction as part of natural product synthesis in plants. How the enzyme enables the oxidative ring-closure reaction of (-)-yatein and avoids substrate hydroxylation remains unknown. To gain insight into the reaction mechanism and understand the details of the pathways leading to products and by-products we performed a comprehensive computational study. The work shows that substrate is bound tightly into the substrate binding pocket with the C7'-H bond closest to the iron(IV)-oxo species. The reaction proceeds through a radical mechanism starting with hydrogen atom abstraction from the C7'-H position followed by ring-closure and a final hydrogen transfer to form iron(II)-water and deoxypodophyllotoxin. Alternative mechanisms including substrate hydroxylation and an electron transfer pathway were explored but found to be higher in energy. The mechanism is guided by electrostatic perturbations of charged residues in the second-coordination sphere that prevent alternative pathways.


Assuntos
Medicamentos de Ervas Chinesas , Hidrogênio , Ferro , Podofilotoxina/análogos & derivados , Oxirredução , Ferro/química , Hidroxilação , Hidrogênio/química , Estresse Oxidativo
5.
Chemistry ; 30(24): e202304172, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38373118

RESUMO

The enzymatic biosynthesis of fragrance molecules from lignin fragments is an important reaction in biotechnology for the sustainable production of fine chemicals. In this work we investigated the biosynthesis of vanillin from lignostilbene by a nonheme iron dioxygenase using QM/MM and tested several suggested proposals via either an epoxide or dioxetane intermediate. Binding of dioxygen to the active site of the protein results in the formation of an iron(II)-superoxo species with lignostilbene cation radical. The dioxygenase mechanism starts with electrophilic attack of the terminal oxygen atom of the superoxo group on the central C=C bond of lignostilbene, and the second-coordination sphere effects in the substrate binding pocket guide the reaction towards dioxetane formation. The computed mechanism is rationalized with thermochemical cycles and valence bond schemes that explain the electron transfer processes during the reaction mechanism. Particularly, the polarity of the protein and the local electric field and dipole moments enable a facile electron transfer and an exergonic dioxetane formation pathway.

6.
Front Chem ; 12: 1365494, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406558

RESUMO

Many enzymes in nature utilize a free arginine (L-Arg) amino acid to initiate the biosynthesis of natural products. Examples include nitric oxide synthases, which generate NO from L-Arg for blood pressure control, and various arginine hydroxylases involved in antibiotic biosynthesis. Among the groups of arginine hydroxylases, several enzymes utilize a nonheme iron(II) active site and let L-Arg react with dioxygen and α-ketoglutarate to perform either C3-hydroxylation, C4-hydroxylation, C5-hydroxylation, or C4-C5-desaturation. How these seemingly similar enzymes can react with high specificity and selectivity to form different products remains unknown. Over the past few years, our groups have investigated the mechanisms of L-Arg-activating nonheme iron dioxygenases, including the viomycin biosynthesis enzyme VioC, the naphthyridinomycin biosynthesis enzyme NapI, and the streptothricin biosynthesis enzyme OrfP, using computational approaches and applied molecular dynamics, quantum mechanics on cluster models, and quantum mechanics/molecular mechanics (QM/MM) approaches. These studies not only highlight the differences in substrate and oxidant binding and positioning but also emphasize on electronic and electrostatic differences in the substrate-binding pockets of the enzymes. In particular, due to charge differences in the active site structures, there are changes in the local electric field and electric dipole moment orientations that either strengthen or weaken specific substrate C-H bonds. The local field effects, therefore, influence and guide reaction selectivity and specificity and give the enzymes their unique reactivity patterns. Computational work using either QM/MM or density functional theory (DFT) on cluster models can provide valuable insights into catalytic reaction mechanisms and produce accurate and reliable data that can be used to engineer proteins and synthetic catalysts to perform novel reaction pathways.

7.
Molecules ; 28(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836804

RESUMO

Cytochrome P450 enzymes in the human body play a pivotal role in both the biosynthesis and the degradation of the hormone melatonin. Melatonin plays a key role in circadian rhythms in the body, but its concentration is also linked to mood fluctuations as well as emotional well-being. In the present study, we present a computational analysis of the binding and activation of melatonin by various P450 isozymes that are known to yield different products and product distributions. In particular, the P450 isozymes 1A1, 1A2, and 1B1 generally react with melatonin to provide dominant aromatic hydroxylation at the C6-position, whereas the P450 2C19 isozyme mostly provides O-demethylation products. To gain insight into the origin of these product distributions of the P450 isozymes, we performed a comprehensive computational study of P450 2C19 isozymes and compared our work with previous studies on alternative isozymes. The work covers molecular mechanics, molecular dynamics and quantum mechanics approaches. Our work highlights major differences in the size and shape of the substrate binding pocket amongst the different P450 isozymes. Consequently, substrate binding and positioning in the active site varies substantially within the P450 isozymes. Thus, in P450 2C19, the substrate is oriented with its methoxy group pointing towards the heme, and therefore reacts favorably through hydrogen atom abstraction, leading to the production of O-demethylation products. On the other hand, the substrate-binding pockets in P450 1A1, 1A2, and 1B1 are tighter, direct the methoxy group away from the heme, and consequently activate an alternative site and lead to aromatic hydroxylation instead.


Assuntos
Isoenzimas , Melatonina , Humanos , Isoenzimas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Domínio Catalítico , Heme , Citocromo P-450 CYP1A2/metabolismo
8.
Chemistry ; 29(63): e202302832, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37694535

RESUMO

CO2 utilization is an important process in the chemical industry with great environmental power. In this work we show how CO2 and H2 can be reacted to form methanol on an iron(II) center and highlight the bottlenecks for the reaction and what structural features of the catalyst are essential for efficient turnover. The calculations predict the reactions to proceed through three successive reaction cycles that start with heterolytic cleavage of H2 followed by sequential hydride and proton transfer processes. The H2 splitting process is an endergonic process and hence high pressures will be needed to overcome this step and trigger the hydrogenation reaction. Moreover, H2 cleavage into a hydride and proton requires a metal to bind hydride and a nearby source to bind the proton, such as an amide or pyrazolyl group, which the scorpionate ligand used here facilitates. As such the computations highlight the non-innocence of the ligand scaffold through proton shuttle from H2 to substrate as an important step in the reaction mechanism.

9.
Inorg Chem ; 62(40): 16401-16411, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37756478

RESUMO

[MFe3S4] cubanes have for some time been of interest for their ability to mimic the electronic and geometric structure of the active site of nitrogenase, the enzyme responsible for fixing N2 to NH3. Nitrogenase naturally occurs in three forms, with the major difference being that the metal ion present in the cofactor active site is either molybdenum (FeMoco), vanadium (FeVco), or iron. The molybdenum and vanadium versions of these cofactors are more closely studied, owing to their larger abundance and rate of catalysis. In this study, we compare free energy profiles and electronic properties of the Mo/V cubanes at various stages during the reduction of N2H4 to NH3. Our findings highlight the differences in how the complexes facilitate the reaction, in particular, vanadium's comparatively weaker ability to interact with the Fe/S network and stabilize reducing electrons prior to N-N bond cleavage, which may have implications when considering the lower efficiency of the vanadium-dependent nitrogenase.

10.
Angew Chem Int Ed Engl ; 62(42): e202310785, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37641517

RESUMO

Density functional calculations establish a novel mechanism of aromatic defluorination by P450 Compound I. This is achieved via either an initial epoxide intermediate or through a 1,2-fluorine shift in an electrophilic intermediate, which highlights that the P450s can defluorinate fluoroarenes. However, in the absence of a proton donor a strong Fe-F bond can be obtained as shown from the calculations.

11.
Phys Chem Chem Phys ; 25(32): 21416-21427, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37534596

RESUMO

Heterogenisation of homogeneous catalysts onto solid supports represents a potential strategy to make the homogeneous catalytic function recyclable and reuseable. Yet, it is usually the case that immobilised catalysts have much lower catalytic activity than their homogeneous counterpart. In addition, the presence of a solid interface introduces a higher degree of complexity by modulating solid/fluid interactions, which can often influence adsorption properties of solvents and reactive species and, ultimately, catalytic activity. In this work, the influence of support and solvent in the H-transfer reduction of propionaldehyde over Al(OiPr)3-SiO2, Al(OiPr)3-TiO2 and Al(OiPr)3-Al2O3 heterogenised catalysts has been studied. Reaction studies are coupled with both NMR relaxation measurements as well as molecular dynamics (MD) simulations in order to unravel surface and solvation effects during the reaction. The results show that, whilst the choice of the support does not influence significantly catalytic activity, reactions carried out in solvents with high affinity for the catalyst surface, or able to hinder access to active sites due to solvation effects, have a lower activity. MD calculations provide key insights into bulk solvation effects involved in such reactions, which are thought to play an important role in determining the catalytic behaviour. The activity of the heterogenised catalysts was found to be comparable with that of the homogeneous Al(OiPr)3 catalysts for all supports used, showing that for the type of reaction studied immobilisation of the homogeneous catalyst onto solid supports is a viable, robust and effective strategy.

12.
Inorg Chem ; 62(36): 14715-14726, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37650683

RESUMO

Nitrogenase is a fascinating enzyme in biology that reduces dinitrogen from air to ammonia through stepwise reduction and protonation. Despite it being studied in detail by experimental and computational groups, there are still many unknown factors in the catalytic cycle of nitrogenase, especially related to the addition of protons and electrons and their order. A recent biomimetic study characterized a potential dinitrogen-bridged diiron cluster as a synthetic model of nitrogenase. Using strong acid and reductants, the dinitrogen was converted into ammonia molecules, but details of the mechanism remains unknown. In particular, it was unclear from the experimental studies whether the proton and electron transfer steps are sequential or alternating. Moreover, the work failed to establish what the function of the diiron core is and whether it split into mononuclear iron fragments during the reaction. To understand the structure and reactivity of the biomimetic dinitrogen-bridged diiron complex [(P2P'PhFeH)2(µ-N2)] with triphenylphosphine ligands, we performed a density functional theory study. Our computational methods were validated against experimental crystal structure coordinates, Mössbauer parameters, and vibrational frequencies and show excellent agreement. Subsequently, we investigated the alternating and consecutive addition of electrons and protons to the system. The calculations identify a number of possible reaction channels, namely, same-site protonation, alternating protonation, and complex dissociation into mononuclear iron centers. The calculations show that the overall mechanism is not a pure sequential set of electron and proton transfers but a mixture of alternating and consecutive steps. In particular, the first reaction steps will start with double proton transfer followed by an electron transfer, while thereafter, there is another proton transfer and a second electron transfer to give a complex whereby ammonia can split off with a low energetic barrier. The second channel starts with alternating protonation of the two nitrogen atoms, whereafter the initial double proton transfer, electrons and protons are added sequentially to form a hydrazine-bound complex. The latter split off ammonia spontaneously after further protonation. The various reaction channels are analyzed with valence bond and orbital diagrams. We anticipate the nitrogenase enzyme to operate with mixed alternating and consecutive protonation and electron transfer steps.


Assuntos
Amônia , Prótons , Ferro , Nitrogênio , Nitrogenase
13.
ACS Catal ; 13(12): 8247-8261, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37342830

RESUMO

Vanadium haloperoxidases (VHPOs) are unique enzymes in biology that catalyze a challenging halogen transfer reaction and convert a strong aromatic C-H bond into C-X (X = Cl, Br, I) with the use of a vanadium cofactor and H2O2. The VHPO catalytic cycle starts with the conversion of hydrogen peroxide and halide (X = Cl, Br, I) into hypohalide on the vanadate cofactor, and the hypohalide subsequently reacts with a substrate. However, it is unclear whether the hypohalide is released from the enzyme or otherwise trapped within the enzyme structure for the halogenation of organic substrates. A substrate-binding pocket has never been identified for the VHPO enzyme, which questions the role of the protein in the overall reaction mechanism. Probing its role in the halogenation of small molecules will enable further engineering of the enzyme and expand its substrate scope and selectivity further for use in biotechnological applications as an environmentally benign alternative to current organic chemistry synthesis. Using a combined experimental and computational approach, we elucidate the role of the vanadium haloperoxidase protein in substrate halogenation. Activity studies show that binding of the substrate to the enzyme is essential for the reaction of the hypohalide with substrate. Stopped-flow measurements demonstrate that the rate-determining step is not dependent on substrate binding but partially on hypohalide formation. Using a combination of molecular mechanics (MM) and molecular dynamics (MD) simulations, the substrate binding area in the protein is identified and even though the selected substrates (methylphenylindole and 2-phenylindole) have limited hydrogen-bonding abilities, they are found to bind relatively strongly and remain stable in a binding tunnel. A subsequent analysis of the MD snapshots characterizes two small tunnels leading from the vanadate active site to the surface that could fit small molecules such as hypohalide, halide, and hydrogen peroxide. Density functional theory studies using electric field effects show that a polarized environment in a specific direction can substantially lower barriers for halogen transfer. A further analysis of the protein structure indeed shows a large dipole orientation in the substrate-binding pocket that could enable halogen transfer through an applied local electric field. These findings highlight the importance of the enzyme in catalyzing substrate halogenation by providing an optimal environment to lower the energy barrier for this challenging aromatic halide insertion reaction.

14.
Chemistry ; 29(42): e202300271, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37159057

RESUMO

High-valent metal-oxo species play critical roles in enzymatic catalysis yet their properties are still poorly understood. In this work we report a combined experimental and computational study into biomimetic iron(IV)-oxo and iron(III)-oxo complexes with tight second-coordination sphere environments that restrict substrate access. The work shows that the second-coordination sphere slows the hydrogen atom abstraction step from toluene dramatically and the kinetics is zeroth order in substrate. However, the iron(II)-hydroxo that is formed has a low reduction potential and hence cannot do OH rebound favorably. The tolyl radical in solution then reacts further with alternative reaction partners. By contrast, the iron(IV)-oxo species reacts predominantly through OH rebound to form alcohol products. Our studies show that the oxidation state of the metal influences reactivities and selectivities with substrate dramatically and that enzymes will likely need an iron(IV) center to catalyze C-H hydroxylation reactions.

15.
Chemistry ; 29(39): e202300478, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37066848

RESUMO

High-valent iron(IV)-oxo intermediates are versatile oxidants in the biotransformation of various substrates by metalloenzymes and catalyze essential reactions for human health as well as in the biodegradation of toxic organic pollutants in the environment. Herein, we report a biomimetic system that efficiently reacts with halophenols through defluorination reactions and characterize various short-lived intermediates along the reaction mechanism. We study the reactivity pattern of a nonheme iron(IV)-oxo species with a series of trihalophenols (X=F, Cl, Br). A combined experimental and computational study reveals that the oxidative dehalogenation of 2,4,6-trifluorophenol is initiated with an H-atom abstraction from the phenolic group by the iron(IV)-oxo species resulting in the formation of a phenolate radical and an iron(III)-hydroxo species. This iron(III)-hydroxo species forms an adduct with the oxidized substrate with λmax at 558 nm which subsequently decays to give quinones as products.

16.
Chemistry ; 29(32): e202203875, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36929809

RESUMO

Caffeine is a natural compound found in plant seeds that after consumption by humans effects the central nervous system as well as the cardiovascular system. In general, the cytochrome P450 enzymes in the liver are involved in the biodegradation of caffeine, which gives paraxanthine, theobromine and theophylline products. There has been debate for many years why multiple products are obtained and how their distributions are determined. To this end we performed a high-level computational study using a combination of molecular dynamics and quantum mechanical approaches. A series of quantum chemical cluster models on the mechanism of caffeine activation by P450 model complexes give hydrogen atom abstraction barriers that predicts the correct ordering and statistical distribution of products. Our studies highlight that second-coordination sphere effects and thermochemical properties of the substrate determine the product distributions.


Assuntos
Cafeína , Citocromo P-450 CYP1A2 , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Hidrogênio , Fígado/metabolismo
17.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835057

RESUMO

Cytochrome P450 enzymes are versatile enzymes found in most biosystems that catalyze mono-oxygenation reactions as a means of biosynthesis and biodegradation steps. In the liver, they metabolize xenobiotics, but there are a range of isozymes with differences in three-dimensional structure and protein chain. Consequently, the various P450 isozymes react with substrates differently and give varying product distributions. To understand how melatonin is activated by the P450s in the liver, we did a thorough molecular dynamics and quantum mechanics study on cytochrome P450 1A2 activation of melatonin forming 6-hydroxymelatonin and N-acetylserotonin products through aromatic hydroxylation and O-demethylation pathways, respectively. We started from crystal structure coordinates and docked substrate into the model, and obtained ten strong binding conformations with the substrate in the active site. Subsequently, for each of the ten substrate orientations, long (up to 1 µs) molecular dynamics simulations were run. We then analyzed the orientations of the substrate with respect to the heme for all snapshots. Interestingly, the shortest distance does not correspond to the group that is expected to be activated. However, the substrate positioning gives insight into the protein residues it interacts with. Thereafter, quantum chemical cluster models were created and the substrate hydroxylation pathways calculated with density functional theory. These relative barrier heights confirm the experimental product distributions and highlight why certain products are obtained. We make a detailed comparison with previous results on CYP1A1 and identify their reactivity differences with melatonin.


Assuntos
Citocromo P-450 CYP1A1 , Citocromo P-450 CYP1A2 , Melatonina , Domínio Catalítico , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Isoenzimas/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Simulação de Dinâmica Molecular
18.
J Am Chem Soc ; 145(10): 5880-5887, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36853654

RESUMO

The catalytic functions of metalloenzymes are often strongly correlated with metal elements in the active sites. However, dioxygen-activating nonheme quercetin dioxygenases (QueD) are found with various first-row transition-metal ions when metal swapping inactivates their innate catalytic activity. To unveil the molecular basis of this seemingly promiscuous yet metal-specific enzyme, we transformed manganese-dependent QueD into a nickel-dependent enzyme by sequence- and structure-based directed evolution. Although the net effect of acquired mutations was primarily to rearrange hydrophobic residues in the active site pocket, biochemical, kinetic, X-ray crystallographic, spectroscopic, and computational studies suggest that these modifications in the secondary coordination spheres can adjust the electronic structure of the enzyme-substrate complex to counteract the effects induced by the metal substitution. These results explicitly demonstrate that such noncovalent interactions encrypt metal specificity in a finely modulated manner, revealing the underestimated chemical power of the hydrophobic sequence network in enzyme catalysis.


Assuntos
Dioxigenases , Metais , Metais/química , Catálise , Dioxigenases/química , Níquel , Domínio Catalítico
19.
Inorg Chem ; 62(5): 2244-2256, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36651185

RESUMO

Bisphenol A (BPA, 2,2-bis-(4-hydroxyphenyl)propane) is used as a precursor in the synthesis of polycarbonate and epoxy plastics; however, its availability in the environment is causing toxicity as an endocrine-disrupting chemical. Metabolism of BPA and their analogues (substitutes) is generally performed by liver cytochrome P450 enzymes and often leads to a mixture of products, and some of those are toxic. To understand the product distributions of P450 activation of BPA, we have performed a computational study into the mechanisms and reactivities using large model structures of a human P450 isozyme (P450 2C9) with BPA bound. Density functional theory (DFT) calculations on mechanisms of BPA activation by a P450 compound I model were investigated, leading to a number of possible products. The substrate-binding pocket is tight, and as a consequence, aliphatic hydroxylation is not feasible as the methyl substituents of BPA cannot reach compound I well due to constraints of the substrate-binding pocket. Instead, we find low-energy pathways that are initiated with phenol hydrogen atom abstraction followed by OH rebound to the phenolic ortho- or para-position. The barriers of para-rebound are well lower in energy than those for ortho-rebound, and consequently, our P450 2C9 model predicts dominant hydroxycumyl alcohol products. The reactions proceed through two-state reactivity on competing doublet and quartet spin state surfaces. The calculations show fast and efficient substrate activation on a doublet spin state surface with a rate-determining electrophilic addition step, while the quartet spin state surface has multiple high-energy barriers that can also lead to various side products including C4-aromatic hydroxylation. This work shows that product formation is more feasible on the low spin state, while the physicochemical properties of the substrate govern barrier heights of the rate-determining step of the reaction. Finally, the importance of the second-coordination sphere is highlighted that determines the product distributions and guides the bifurcation pathways.


Assuntos
Sistema Enzimático do Citocromo P-450 , Fenóis , Humanos , Biotransformação , Sistema Enzimático do Citocromo P-450/química , Teoria da Densidade Funcional , Hidroxilação
20.
Phys Chem Chem Phys ; 24(44): 27250-27262, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36321952

RESUMO

Many drug molecules contain isonitrile substituents; however, synthesizing these compounds remains challenging in organic chemistry. The isonitrile synthesizing enzyme ScoE utilizes a substrate with the γ-Gly substituent, and using two molecules of dioxygen and α-ketoglutarate converts it to an isonitrile group through an oxidative decarboxylation reaction. To explore its substrate scope and whether this process could be used for the biosynthesis of isonitrile-containing drug molecules, we performed a predictive computational study. We started with the recent crystal structure coordinates of ScoE, removed the substrate and inserted two potential precursor molecules of the drug molecules axisonitrile-1 and xanthocillin into the structure, whereby both molecules have their isonitrile groups replaced by γ-Gly. Both substrates fit into the substrate binding pocket of the enzyme well and position them in the correct orientation for catalysis on the iron center. Based on a molecular dynamics simulation, we created a quantum chemical cluster model of the enzyme active site with γ-Gly-substituted axisonitrile-1 and studied the oxidative decarboxylation reaction to form axisonitrile-1 products. The calculations give similar barriers to wildtype substrate for either the initial C-H or N-H hydrogen atom abstraction, which leads to a radical intermediate and form desaturated reactants. We then took the desaturated substrate and created another iron(IV)-oxo model complex to study the subsequent hydrogen atom abstraction and decarboxylation and found this to be feasible as well although we predict to see by-products for hydroxylation in the second cycle. Nevertheless, we believe that the ScoE enzyme can be utilized for the biosynthesis of isonitrile substituents in substrates with γ-Gly components as an environmentally benign alternative to organic chemistry approaches for the synthesis of isonitrile groups. We hope that experimental studies will be able to confirm our hypothesis.


Assuntos
Hidrogênio , Ferro , Hidroxilação , Catálise , Ferro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...